
KrakenBoot: Firmware-LevelCluster
ProvisioningviaUEFISurgery

Devon Bautista – Arizona State University
LA-UR-19-27138

Mentors: Lowell Wofford, Cory Lueninghoener

1. Abstract
Traditionally, cluster booting and provisioning has relied on a multitude of dated software such as PXE boot, tftp, and DHCP, which have been proven
to be fragile when combined. Furthermore, firmware shipped with motherboards is normally closed-source and often comes with unnecessary bloat which
can increase boot times. Thus, a more robust and integrated solution is needed which solves both of these issues. Kraken is a distributed automation
tool with applications in cluster booting and provisioning to reliably enforce node state. It essentially unifies the fragmented utilities described above for
a more robust cluster provisioning solution. The Unified Extensible Firmware Interface (UEFI) is the de facto open firmware specification, but
its implementation is largely proprietary and closed-source. Being able to control the UEFI boot process and subsequently fine-tune it for cluster nodes
is necessary for tuned, performance systems like clusters. Therefore, we propose KrakenBoot – a project which surgically removes unnecessary (and
possibly erratic) UEFI components and replaces them with Kraken/Linux as a pre-boot environment.

2. Structure

• LinuxBoot[1] is used to generate firmware
for certain mainboards. In this research the
Comanche C99X ARM-based experimental
board was used for testing.

• Kraken[2] itself is embedded in the initramfs,
which is generated with U-root[3].

• The Linux Kernel[4] is combined with the
U-root initramfs and passed to LinuxBoot to
generate the KrakenBoot firmware image.

• KrakenBoot integrates Kraken into the
initramfs and handles the Kraken environ-
ment creation.

3. Replacing UEFI Drivers with Linux and Kraken Initramfs
Figure 1 shows the 7-stage boot sequence of UEFI. The red markings indicate which com-
ponents were removed while the green markings show which components were added.

Figure 1: Modifying the UEFI boot pro-
cess

• Most UEFI drivers in the DXE Phase (Phase 3) are
scrapped in favor of drivers in the Linux kernel.

• Instead of booting using unknown vendor driver bi-
naries, a known kernel-initramfs pair is launched.
The boot process from here is known!

• By eliminating unnecessary DXE drivers and com-
piling a custom Linux kernel, the firmware:

– has a known boot process from the DXE phase.

– is slimmed down only to what it needs.

• Some closed-source parts of the UEFI implementa-
tion (Phases 1-2) are necessary; we can’t get rid of
them.

Figure 2: A comparison of stock and Krak-
enBoot firmware marking the removal of many
vendor-specific DXE drivers in favor of Linux
drivers.

Figure 2 above shows how many of the vendor-specific DXE drivers are replaced with a modified
DxeCore and Linux/initramfs pair. This is the pre-boot environment from which the Kraken
provisioner will run. From here, one can take control of how OS booting/provisioning is done, etc.

4. Results
• A KrakenBoot firmware image was success-

fully built for the Comanche C99X board.

Firmware Comparison
Stock KrakenBoot

Boot Timea 3:45 N/A
Total DXE Size 7MiB 9MiB

• A larger DXE volume means less space
wasted by padding and more space utilized
by manually-chosen drivers, etc.

• Boot time was inconclusive due to time con-
straints for testing KrakenBoot on actual
hardware.
aBoot times measured from power on until the user

interaction (i.e. login or an interactive shell) starts.

5. References
[1] Ronald Minnich, et al. LinuxBoot. url:

https://www.linuxboot.org/.

[2] Kraken. url: https://github.com/hpc/
kraken.

[3] Ronald Minnich, et al. u-root. url: http:
//u-root.tk/.

[4] Linus Torvalds, et al. Linux. Ver-
sion 4.14.62. url: https://www.kernel.
org/.

6. Conclusion & Future Work
• We successfully created a KrakenBoot firmware image identical in size to the original Comanche

C99X firmware, but with more efficient spatial usage of the DXE volume of the vendor firmware
while getting rid of many vendor-specific binary blobs.

• Improving boot time was inconclusive due to time constraints during testing, but we hope to
subsequently continue with testing.

• Choosing which DXE drivers to omit for the testing board needs more extensive research and as
of now requires manual sifting.

• Expanding the KrakenBoot project to other platforms is certainly feasible, albeit each platform
needs to be supported manually on a case-by-case basis.


